0 Mėgstami
0Krepšelis

Additive Number Theory: Inverse Problems and the Geometry of Sumsets

140,23 
140,23 
2025-07-31 140.2300 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.

Informacija

Autorius: Melvyn B. Nathanson
Serija: Graduate Texts in Mathematics
Leidėjas: Springer US
Išleidimo metai: 1996
Knygos puslapių skaičius: 312
ISBN-10: 0387946551
ISBN-13: 9780387946559
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Number theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Additive Number Theory: Inverse Problems and the Geometry of Sumsets“

Būtina įvertinti prekę

Goodreads reviews for „Additive Number Theory: Inverse Problems and the Geometry of Sumsets“