0 Mėgstami
0Krepšelis

Advances in Independent Component Analysis

304,90 
304,90 
2025-07-31 304.9000 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Independent Component Analysis (ICA) is a fast developing area of intense research interest. Following on from Self-Organising Neural Networks: Independent Component Analysis and Blind Signal Separation, this book reviews the significant developments of the past year. It covers topics such as the use of hidden Markov methods, the independence assumption, and topographic ICA, and includes tutorial chapters on Bayesian and variational approaches. It also provides the latest approaches to ICA problems, including an investigation into certain "hard problems" for the very first time. Comprising contributions from the most respected and innovative researchers in the field, this volume will be of interest to students and researchers in computer science and electrical engineering; research and development personnel in disciplines such as statistical modelling and data analysis; bio-informatic workers; and physicists and chemists requiring novel data analysis methods.

Informacija

Serija: Perspectives in Neural Computing
Leidėjas: Springer London
Išleidimo metai: 2000
Knygos puslapių skaičius: 300
ISBN-10: 1852332638
ISBN-13: 9781852332631
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Computational biology / bioinformatics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Advances in Independent Component Analysis“

Būtina įvertinti prekę

Goodreads reviews for „Advances in Independent Component Analysis“