0 Mėgstami
0Krepšelis

Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.

Informacija

Autorius: J. L. Bueso, A. Verschoren, José Gómez-Torrecillas,
Serija: Mathematical Modelling: Theory and Applications
Leidėjas: Springer Netherlands
Išleidimo metai: 2010
Knygos puslapių skaičius: 316
ISBN-10: 9048163285
ISBN-13: 9789048163281
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Numerical analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups“

Būtina įvertinti prekę

Goodreads reviews for „Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups“