0 Mėgstami
0Krepšelis

Algorithms for Verifying Deep Neural Networks

261,34 
261,34 
2025-07-31 261.3400 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Neural networks have been widely used in many applications, such as image classification and understanding, language processing, and control of autonomous systems. These networks work by mapping inputs to outputs through a sequence of layers. At each layer, the input to that layer undergoes an affine transformation followed by a simple nonlinear transformation before being passed to the next layer. Neural networks are being used for increasingly important tasks, and in some cases, incorrect outputs can lead to costly consequences, hence validation of correctness at each layer is vital. The sheer size of the networks makes this not feasible using traditional methods. In this monograph, the authors survey a class of methods that are capable of formally verifying properties of deep neural networks. In doing so, they introduce a unified mathematical framework for verifying neural networks, classify existing methods under this framework, provide pedagogical implementations of existing methods, and compare those methods on a set of benchmark problems. Algorithms for Verifying Deep Neural Networks serves as a tutorial for students and professionals interested in this emerging field as well as a benchmark to facilitate the design of new verification algorithms.

Informacija

Autorius: Changliu Liu, Tomer Arnon, Chris Lazarus,
Leidėjas: Now Publishers Inc
Išleidimo metai: 2021
Knygos puslapių skaičius: 178
ISBN-10: 1680837869
ISBN-13: 9781680837865
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Optimization

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Algorithms for Verifying Deep Neural Networks“

Būtina įvertinti prekę

Goodreads reviews for „Algorithms for Verifying Deep Neural Networks“