0 Mėgstami
0Krepšelis

An Introduction to Kalman Filtering with MATLAB Examples

54,43 
54,43 
2025-07-31 54.4300 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applications, e.g., target tracking, guidance and navigation, and communications systems. The purpose of this book is to present a brief introduction to Kalman filtering. The theoretical framework of the Kalman filter is first presented, followed by examples showing its use in practical applications. Extensions of the method to nonlinear problems and distributed applications are discussed. A software implementation of the algorithm in the MATLAB programming language is provided, as well as MATLAB code for several example applications discussed in the manuscript.

Informacija

Autorius: Narayan Kovvali, Andreas Spanias, Mahesh Banavar,
Serija: Synthesis Lectures on Signal Processing
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2013
Knygos puslapių skaičius: 84
ISBN-10: 3031014081
ISBN-13: 9783031014086
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Engineering: general

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „An Introduction to Kalman Filtering with MATLAB Examples“

Būtina įvertinti prekę

Goodreads reviews for „An Introduction to Kalman Filtering with MATLAB Examples“