0 Mėgstami
0Krepšelis

Approximation Theory and Algorithms for Data Analysis

98,98 
98,98 
2025-07-31 98.9800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.

Informacija

Autorius: Armin Iske
Serija: Texts in Applied Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2019
Knygos puslapių skaičius: 368
ISBN-10: 3030052273
ISBN-13: 9783030052270
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Differential calculus and equations

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Approximation Theory and Algorithms for Data Analysis“

Būtina įvertinti prekę

Goodreads reviews for „Approximation Theory and Algorithms for Data Analysis“