0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

During the last two decades, considerable progress has been made in statistical time series analysis. The aim of this book is to present a survey of one of the most active areas in this field: the identification of autoregressive moving-average models, i.e., determining their orders. Readers are assumed to have already taken one course on time series analysis as might be offered in a graduate course, but otherwise this account is self-contained. The main topics covered include: Box-Jenkins' method, inverse autocorrelation functions, penalty function identification such as AIC, BIC techniques and Hannan and Quinn's method, instrumental regression, and a range of pattern identification methods. Rather than cover all the methods in detail, the emphasis is on exploring the fundamental ideas underlying them. Extensive references are given to the research literature and as a result, all those engaged in research in this subject will find this an invaluable aid to their work.

Informacija

Autorius: Byoungseon Choi
Serija: Springer Series in Statistics
Leidėjas: Springer US
Išleidimo metai: 2012
Knygos puslapių skaičius: 216
ISBN-10: 1461397472
ISBN-13: 9781461397472
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Applied mathematics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „ARMA Model Identification“

Būtina įvertinti prekę

Goodreads reviews for „ARMA Model Identification“