0 Mėgstami
0Krepšelis

Asymptotic Behavior of Monodromy: Singularly Perturbed Differential Equations on a Riemann Surface

42,26 
42,26 
2025-07-31 42.2600 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book concerns the question of how the solution of a system of ODE's varies when the differential equation varies. The goal is to give nonzero asymptotic expansions for the solution in terms of a parameter expressing how some coefficients go to infinity. A particular classof families of equations is considered, where the answer exhibits a new kind of behavior not seen in most work known until now. The techniques include Laplace transform and the method of stationary phase, and a combinatorial technique for estimating the contributions of terms in an infinite series expansion for the solution. Addressed primarily to researchers inalgebraic geometry, ordinary differential equations and complex analysis, the book will also be of interest to applied mathematicians working on asymptotics of singular perturbations and numerical solution of ODE's.

Informacija

Autorius: Carlos Simpson
Serija: Lecture Notes in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 1991
Knygos puslapių skaičius: 148
ISBN-10: 3540550097
ISBN-13: 9783540550099
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Algebraic geometry

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Asymptotic Behavior of Monodromy: Singularly Perturbed Differential Equations on a Riemann Surface“

Būtina įvertinti prekę

Goodreads reviews for „Asymptotic Behavior of Monodromy: Singularly Perturbed Differential Equations on a Riemann Surface“