0 Mėgstami
0Krepšelis
93,15 
93,15 
2025-07-31 93.1500 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain of interest. For such, they discuss how one can effectively discover the most suitable set of components of decision-tree induction algorithms to deal with a wide variety of applications through the paradigm of evolutionary computation, following the emergence of a novel field called hyper-heuristics. "Automatic Design of Decision-Tree Induction Algorithms" would be highly useful for machine learning and evolutionary computation students and researchers alike.

Informacija

Autorius: Rodrigo C. Barros, Alex A. Freitas, André C. P. L. F de Carvalho,
Serija: SpringerBriefs in Computer Science
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2015
Knygos puslapių skaičius: 188
ISBN-10: 3319142305
ISBN-13: 9783319142302
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Automatic Design of Decision-Tree Induction Algorithms“

Būtina įvertinti prekę

Goodreads reviews for „Automatic Design of Decision-Tree Induction Algorithms“