0 Mėgstami
0Krepšelis

Automorphic Forms and Lie Superalgebras

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

A principal ingredient in the proof of the Moonshine Theorem, connecting the Monster group to modular forms, is the infinite dimensional Lie algebra of physical states of a chiral string on an orbifold of a 26 dimensional torus, called the Monster Lie algebra. It is a Borcherds-Kac-Moody Lie algebra with Lorentzian root lattice; and has an associated automorphic form having a product expansion describing its structure. Lie superalgebras are generalizations of Lie algebras, useful for depicting supersymmetry ¿ the symmetry relating fermions and bosons. Most known examples of Lie superalgebras with a related automorphic form such as the Fake Monster Lie algebra whose reflection group is given by the Leech lattice arise from (super)string theory and can be derived from lattice vertex algebras. The No-Ghost Theorem from dual resonance theory and a conjecture of Berger-Li-Sarnak on the eigenvalues of the hyperbolic Laplacian provide strong evidence that they are of rank at most 26. The aim of this book is to give the reader the tools to understand the ongoing classification and construction project of this class of Lie superalgebras and is ideal for a graduate course. The necessary background is given within chapters or in appendices.

Informacija

Autorius: Urmie Ray
Serija: Algebra and Applications
Leidėjas: Springer Netherlands
Išleidimo metai: 2010
Knygos puslapių skaičius: 296
ISBN-10: 9048172543
ISBN-13: 9789048172542
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Algebra

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Automorphic Forms and Lie Superalgebras“

Būtina įvertinti prekę

Goodreads reviews for „Automorphic Forms and Lie Superalgebras“