0 Mėgstami
0Krepšelis

Bayesian Nonparametrics Via Neural Networks

Šiuo metu neparduodama

Knygos aprašymas

Bayesian Nonparametrics via Neural Networks is the first book to focus on neural networks in the context of nonparametric regression and classification, working within the Bayesian paradigm. It discusses neural networks in a statistical context, an approach in contrast to existing books, which tend to treat neural networks as a machine learning algorithm instead of a statistical model. Once this underlying statistical model is recognized, other standard statistical techniques can be applied to improve the model. The Bayesian approach allows better accounting for uncertainty. This book covers uncertainty in model choice and ways to deal with this issue, exploring ideas from statistics and machine learning. An analysis on the choice of prior and new noninformative priors is included, along with a substantial literature review. Written for statisticians using statistical terminology, this book will lead statisticians to an increased understanding of the neural network model and its applicability to real-world problems.

Informacija

Autorius: Herbert K. H. Lee
Leidėjas: SIAM: Society for Industrial and Applied Mathematics
Išleidimo metai: 2004
Knygos puslapių skaičius: 104
ISBN-13: 9780898715637
Formatas: 6.75 x 0.25 x 9.5 inches. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Bayesian Nonparametrics Via Neural Networks“

Būtina įvertinti prekę

Goodreads reviews for „Bayesian Nonparametrics Via Neural Networks“