0 Mėgstami
0Krepšelis

Bayesian Optimization with Application to Computer Experiments

110,09 
110,09 
2025-07-31 110.0900 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book introduces readers to Bayesian optimization, highlighting advances in the field and showcasing its successful applications to computer experiments. R code is available as online supplementary material for most included examples, so that readers can better comprehend and reproduce methods. Compact and accessible, the volume is broken down into four chapters. Chapter 1 introduces the reader to the topic of computer experiments; it includes a variety of examples across many industries. Chapter 2 focuses on the task of surrogate model building and contains a mix of several different surrogate models that are used in the computer modeling and machine learning communities. Chapter 3 introduces the core concepts of Bayesian optimization and discusses unconstrained optimization. Chapter 4 moves on to constrained optimization, and showcases some of the most novel methods found in the field. This will be a useful companion to researchers and practitioners workingwith computer experiments and computer modeling. Additionally, readers with a background in machine learning but minimal background in computer experiments will find this book an interesting case study of the applicability of Bayesian optimization outside the realm of machine learning.

Informacija

Autorius: Herbert K. H. Lee, Tony Pourmohamad,
Serija: SpringerBriefs in Statistics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2021
Knygos puslapių skaičius: 116
ISBN-10: 3030824578
ISBN-13: 9783030824570
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Bayesian inference

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Bayesian Optimization with Application to Computer Experiments“

Būtina įvertinti prekę

Goodreads reviews for „Bayesian Optimization with Application to Computer Experiments“