0 Mėgstami
0Krepšelis

Biomedical Knowledge Base for Genomic & Proteomic Analysis Using Graph: Gene Analysis Graph Theory

89,10 
89,10 
2025-07-31 89.1000 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Image segmentation is emerging as an intriguing and throught provoking topic in the field of Computer Science and Engineering. Density based clustering algorithm has been used for image segmentation in this research. Gene analysis has a huge scope in identifying the genetic disorders early and preform the respective diagnosis. Gene regulatory modules microRNA (miRNA) and transcription factor (TF) play a very important role in gene regulation. Moreover, Clustering is a main challenge in gene analysis. This challenge reflects a huge effect on genetic field. Thus in existing system the multiple genomic and proteomic analysis are scattered in multiple distributed systems. In this research, a common knowledge base for genomic and proteomic analysis using graph clustering, collaborative filtering (CF) and Depth First Search (DFS) is developed to group the genes and regulatory modules for each and every gene expression. Finally, the challenge of deriving taxonomy for a particular gene id is resolved using Bayesian Rose Tree (BRT). The main aim of the research is to serve for the medical industry by combining the image segmentation technology and gene ontology.

Informacija

Autorius: K. Venkata Subramanian, S. Jaya Lakshmi,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2019
Knygos puslapių skaičius: 144
ISBN-10: 6200458626
ISBN-13: 9786200458629
Formatas: Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Biomedical Knowledge Base for Genomic & Proteomic Analysis Using Graph: Gene Analysis Graph Theory“

Būtina įvertinti prekę

Goodreads reviews for „Biomedical Knowledge Base for Genomic & Proteomic Analysis Using Graph: Gene Analysis Graph Theory“