0 Mėgstami
0Krepšelis

Bringing Machine Learning to Software-Defined Networks

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.

Informacija

Autorius: Zehua Guo
Serija: SpringerBriefs in Computer Science
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2022
Knygos puslapių skaičius: 84
ISBN-10: 9811948739
ISBN-13: 9789811948732
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Machine learning

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Bringing Machine Learning to Software-Defined Networks“

Būtina įvertinti prekę

Goodreads reviews for „Bringing Machine Learning to Software-Defined Networks“