0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Resonances are ubiquitous in dynamical systems with many degrees of freedom. They have the basic effect of introducing slow-fast behavior in an evolutionary system which, coupled with instabilities, can result in highly irregular behavior. This book gives a unified treatment of resonant problems with special emphasis on the recently discovered phenomenon of homoclinic jumping. After a survey of the necessary background, a general finite dimensional theory of homoclinic jumping is developed and illustrated with examples. The main mechanism of chaos near resonances is discussed in both the dissipative and the Hamiltonian context. Previously unpublished new results on universal homoclinic bifurcations near resonances, as well as on multi-pulse Silnikov manifolds are described. The results are applied to a variety of different problems, which include applications from beam oscillations, surface wave dynamics, nonlinear optics, atmospheric science and fluid mechanics. The theory is further used to study resonances in Hamiltonian systems with applications to molecular dynamics and rigid body motion. The final chapter contains an infinite dimensional extension of the finite dimensional theory, with application to the perturbed nonlinear Schrödinger equation and coupled NLS equations.

Informacija

Autorius: G. Haller
Serija: Applied Mathematical Sciences
Leidėjas: Springer US
Išleidimo metai: 1999
Knygos puslapių skaičius: 450
ISBN-10: 0387986979
ISBN-13: 9780387986975
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Cybernetics and systems theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Chaos Near Resonance“

Būtina įvertinti prekę

Goodreads reviews for „Chaos Near Resonance“