0 Mėgstami
0Krepšelis

Computational Methods for Deep Learning: Theory, Algorithms, and Implementations

140,23 
140,23 
2025-07-31 140.2300 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The first edition of this textbook was published in 2021. Over the past two years, we have invested in enhancing all aspects of deep learning methods to ensure the book is comprehensive and impeccable. Taking into account feedback from our readers and audience, the author has diligently updated this book. The second edition of this textbook presents control theory, transformer models, and graph neural networks (GNN) in deep learning. We have incorporated the latest algorithmic advances and large-scale deep learning models, such as GPTs, to align with the current research trends. Through the second edition, this book showcases how computational methods in deep learning serve as a dynamic driving force in this era of artificial intelligence (AI). This book is intended for research students, engineers, as well as computer scientists with interest in computational methods in deep learning. Furthermore, it is also well-suited for researchers exploring topics such as machine intelligence, robotic control, and related areas.

Informacija

Autorius: Wei Qi Yan
Serija: Texts in Computer Science
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2023
Knygos puslapių skaičius: 244
ISBN-10: 9819948223
ISBN-13: 9789819948222
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Mathematical modelling

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Computational Methods for Deep Learning: Theory, Algorithms, and Implementations“

Būtina įvertinti prekę

Goodreads reviews for „Computational Methods for Deep Learning: Theory, Algorithms, and Implementations“