0 Mėgstami
0Krepšelis

Computational Texture and Patterns: From Textons to Deep Learning

90,73 
90,73 
2025-07-31 90.7300 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance¿to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adaptingto new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.

Informacija

Autorius: Kristin J. Dana
Serija: Synthesis Lectures on Computer Vision
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2018
Knygos puslapių skaičius: 116
ISBN-10: 303100695X
ISBN-13: 9783031006951
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Pattern recognition

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Computational Texture and Patterns: From Textons to Deep Learning“

Būtina įvertinti prekę

Goodreads reviews for „Computational Texture and Patterns: From Textons to Deep Learning“