0 Mėgstami
0Krepšelis
98,98 
98,98 
2025-07-31 98.9800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.

Informacija

Autorius: Tushar Krishna, Hyoukjun Kwon, Ananda Samajdar, Michael Pellauer, Angshuman Parashar,
Serija: Synthesis Lectures on Computer Architecture
Leidėjas: Springer International Publishing
Išleidimo metai: 2020
Knygos puslapių skaičius: 168
ISBN-10: 3031006399
ISBN-13: 9783031006395
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Electronics: circuits and components

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Data Orchestration in Deep Learning Accelerators“

Būtina įvertinti prekę

Goodreads reviews for „Data Orchestration in Deep Learning Accelerators“