0 Mėgstami
0Krepšelis

Dependability for Systems with a Partitioned State Space: Markov and Semi-Markov Theory and Computational Implementation

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Probabilistic models of technical systems are studied here whose finite state space is partitioned into two or more subsets. The systems considered are such that each of those subsets of the state space will correspond to a certain performance level of the system. The crudest approach differentiates between 'working' and 'failed' system states only. Another, more sophisticated, approach will differentiate between the various levels of redundancy provided by the system. The dependability characteristics examined here are random variables associated with the state space's partitioned structure; some typical ones are as follows ¿ The sequence of the lengths of the system's working periods; ¿ The sequences of the times spent by the system at the various performance levels; ¿ The cumulative time spent by the system in the set of working states during the first m working periods; ¿ The total cumulative 'up' time of the system until final breakdown; ¿ The number of repair events during a fmite time interval; ¿ The number of repair events until final system breakdown; ¿ Any combination of the above. These dependability characteristics will be discussed within the Markov and semi-Markov frameworks.

Informacija

Autorius: Attila Csenki
Serija: Lecture Notes in Statistics
Leidėjas: Springer US
Išleidimo metai: 1994
Knygos puslapių skaičius: 256
ISBN-10: 0387943331
ISBN-13: 9780387943336
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Numerical analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Dependability for Systems with a Partitioned State Space: Markov and Semi-Markov Theory and Computational Implementation“

Būtina įvertinti prekę

Goodreads reviews for „Dependability for Systems with a Partitioned State Space: Markov and Semi-Markov Theory and Computational Implementation“