0 Mėgstami
0Krepšelis

Design of Paddy Crop Production Technique: Using K-Mean, Naive Bayes, KNN and SVM Classifiers

57,42 
57,42 
2025-07-31 57.4200 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Crop production analysis is one of the applications of prediction analysis. This study is related to paddy production. In the previous research work, the SVM and KNN algorithm is implemented to analyze prediction. To improve the accuracy of the paddy production, the hybrid classifier will be designed based on K-mean clustering and Naive Bayes classifier. The presented and earlier algorithms will be applied in python and it is expected that accuracy will be improved with a reduction in execution time. The performance of SVM, KNN, and Naive Bayes is compared for the wheat production prediction. Naive Bayes is the best classifier for the wheat production prediction as per the obtained analytic results.

Informacija

Autorius: Pankaj Bhambri
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2020
Knygos puslapių skaičius: 76
ISBN-10: 6202683309
ISBN-13: 9786202683302
Formatas: Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Design of Paddy Crop Production Technique: Using K-Mean, Naive Bayes, KNN and SVM Classifiers“

Būtina įvertinti prekę

Goodreads reviews for „Design of Paddy Crop Production Technique: Using K-Mean, Naive Bayes, KNN and SVM Classifiers“