0 Mėgstami
0Krepšelis

Dimensionality Reducing Expansion of Multivariate Integration

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Multivariate integration has been a fundamental subject in mathematics, with broad connections to a number of areas: numerical analysis, approximation theory, partial differential equations, integral equations, harmonic analysis, etc. In this work the exposition focuses primarily on a powerful tool that has become especially important in our computerized age, namely, dimensionality reducing expansion (DRE). The method of DRE is a technique for changing a higher dimensional integration to a lower dimensional one with or without remainder. To date, there is no comprehensive treatment of this subject in monograph or textbook form. Key features of this self-contained monograph include: * fine exposition covering the history of the subject * up-to-date new results, related to many fields of current research such as boundary element methods for solving PDEs and wavelet analysis * presentation of DRE techniques using a broad array of examples * good balance between theory and application * coverage of such related topics as boundary type quadratures and asymptotic expansions of oscillatory integrals * excellent and comprehensive bibliography and index This work will appeal to a broad audience of students and researchers in pure and applied mathematics, statistics, and physics, and can be used in a graduate/advanced undergraduate course or as a standard reference text.

Informacija

Autorius: Tian-Xiao He
Leidėjas: Birkhäuser Boston
Išleidimo metai: 2011
Knygos puslapių skaičius: 240
ISBN-10: 1461274141
ISBN-13: 9781461274148
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Differential calculus and equations

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Dimensionality Reducing Expansion of Multivariate Integration“

Būtina įvertinti prekę

Goodreads reviews for „Dimensionality Reducing Expansion of Multivariate Integration“