0 Mėgstami
0Krepšelis

Diversity-Based Hybrid Classifier Fusion: A Practical Approach to Motor Unit Potential Classification for Electromyographic Signal Decomposition

113,70 
113,70 
2025-07-31 113.7000 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Revision with unchanged content. Electromyographic (EMG) signal analysis is the process of resolving a composite EMG signal into its constituent motor unit potential trains (classes) and it can be configured as a classification problem. An EMG signal detected by the tip of an inserted needle electrode is the superposition of the indivi­dual electrical contributions of the different motor units that are active, during a muscle contraction, and background interference. This book addresses the process of EMG signal decomposition by developing an interactive classification system, which uses multiple classifier fusion techniques in order to achieve improved classification performance. The developed system combines heterogeneous sets of base classifier ensembles of different kinds and employs both a one level classifier fusion scheme and a hybrid classifier fusion approach. Performance of the developed system was evaluated using synthetic simulated signals of known properties and real signals and compared with the performance of the constituent base classifiers. This book is directed toward graduate students and researchers in the area of electromyography and professionals in electromyography clinics.

Informacija

Autorius: Sarbast Rasheed
Leidėjas: AV Akademikerverlag
Išleidimo metai: 2012
Knygos puslapių skaičius: 216
ISBN-10: 3639452445
ISBN-13: 9783639452440
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Relativity physics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Diversity-Based Hybrid Classifier Fusion: A Practical Approach to Motor Unit Potential Classification for Electromyographic Signal Decomposition“

Būtina įvertinti prekę

Goodreads reviews for „Diversity-Based Hybrid Classifier Fusion: A Practical Approach to Motor Unit Potential Classification for Electromyographic Signal Decomposition“