0 Mėgstami
0Krepšelis

Dynamic Surface Control of Uncertain Nonlinear Systems: An LMI Approach

169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Although the problem of nonlinear controller design is as old as that of linear controller design, the systematic design methods framed in response are more sparse. Given the range and complexity of nonlinear systems, effective new methods of control design are therefore of significant importance. Dynamic Surface Control of Uncertain Nonlinear Systems provides a theoretically rigorous and practical introduction to nonlinear control design. The convex optimization approach applied to good effect in linear systems is extended to the nonlinear case using the new dynamic surface control (DSC) algorithm developed by the authors. A variety of problems ¿ DSC design, output feedback, input saturation and fault-tolerant control among them ¿ are considered. The inclusion of applications material demonstrates the real significance of the DSC algorithm, which is robust and easy to use, for nonlinear systems with uncertainty in automotive and robotics. Written for the researcher and graduate student of nonlinear control theory, this book will provide the applied mathematician and engineer alike with a set of powerful tools for nonlinear control design. It will also be of interest to practitioners working with a mechatronic systems in aerospace, manufacturing and automotive and robotics, milieux.

Informacija

Autorius: J. Karl Hedrick, Bongsob Song,
Serija: Communications and Control Engineering
Leidėjas: Springer London
Išleidimo metai: 2013
Knygos puslapių skaičius: 268
ISBN-10: 1447126556
ISBN-13: 9781447126553
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Cybernetics and systems theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Dynamic Surface Control of Uncertain Nonlinear Systems: An LMI Approach“

Būtina įvertinti prekę

Goodreads reviews for „Dynamic Surface Control of Uncertain Nonlinear Systems: An LMI Approach“