0 Mėgstami
0Krepšelis
84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe­ 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap­ ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap­ ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and properties of the set of bifurcation values of the parameter, in­ eluding universal properties such as Feigenbaum universality.

Informacija

Autorius: A. N. Sharkovsky, V. V. Fedorenko, A. G. Sivak, S. F. Kolyada,
Serija: Mathematics and Its Applications
Leidėjas: Springer Netherlands
Išleidimo metai: 2010
Knygos puslapių skaičius: 276
ISBN-10: 9048148464
ISBN-13: 9789048148462
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Differential calculus and equations

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Dynamics of One-Dimensional Maps“

Būtina įvertinti prekę

Goodreads reviews for „Dynamics of One-Dimensional Maps“