0 Mėgstami
0Krepšelis

ELM in nonstationary environment: Extreme Learning Machine and its variants for Time-Varying Neural Networks case study

70,53 
70,53 
2025-07-31 70.5300 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

System identification in nonstationary environment represents a challenging problem and an advaned neural architecture namely Time-Varying Neural Net- works (TV-NN) has shown remarkable identification properties in nonlinear and nonstationary conditions. Time-varying weights, each being a linear com- bination of a certain set of basis functions, are used in such kind of networks instead of stable ones, which inevitalbly increases the number of free parame- ters. Therefore, an Extreme Learning Machine (ELM) approach is developed to accelerate the training procedure for TV-NN. What is more, in order to ob- tain a more compact structure, or determine several important parameters, or update the network more efficiently in online case, several variants of ELM-TV are proposed and discussed in the book. Related computer simulations have been carried out and show the effectiveness of the algorithms.

Informacija

Autorius: Yibin Ye, Stefano Squartini, Francesco Piazza,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2012
Knygos puslapių skaičius: 88
ISBN-10: 3659248908
ISBN-13: 9783659248900
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Email: consumer / user guides

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „ELM in nonstationary environment: Extreme Learning Machine and its variants for Time-Varying Neural Networks case study“

Būtina įvertinti prekę

Goodreads reviews for „ELM in nonstationary environment: Extreme Learning Machine and its variants for Time-Varying Neural Networks case study“