0 Mėgstami
0Krepšelis

Error Estimates for Well-Balanced Schemes on Simple Balance Laws: One-Dimensional Position-Dependent Models

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-dependent relaxation system, in inertial approximation. Such estimates shed light on why those algorithms based on source terms handled like "local scatterers" can outperform other, more standard, numerical schemes. Two-dimensional Riemann problems for the linear wave equation are also solved, with discussion of the issues raised relating to the treatment of 2D balance laws. All of the material provided in this book is highly relevant for the understanding of well-balanced schemes and will contribute to future improvements.

Informacija

Autorius: Laurent Gosse, Debora Amadori,
Serija: SpringerBriefs in Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2015
Knygos puslapių skaičius: 128
ISBN-10: 3319247840
ISBN-13: 9783319247847
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Differential calculus and equations

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Error Estimates for Well-Balanced Schemes on Simple Balance Laws: One-Dimensional Position-Dependent Models“

Būtina įvertinti prekę

Goodreads reviews for „Error Estimates for Well-Balanced Schemes on Simple Balance Laws: One-Dimensional Position-Dependent Models“