0 Mėgstami
0Krepšelis

Estimation in Conditionally Heteroscedastic Time Series Models

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.

Informacija

Autorius: Daniel Straumann
Serija: Lecture Notes in Statistics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2004
Knygos puslapių skaičius: 248
ISBN-10: 3540211357
ISBN-13: 9783540211358
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Probability and statistics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Estimation in Conditionally Heteroscedastic Time Series Models“

Būtina įvertinti prekę

Goodreads reviews for „Estimation in Conditionally Heteroscedastic Time Series Models“