0 Mėgstami
0Krepšelis

Estimation in Semiparametric Models: Some Recent Developments

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Assume one has to estimate the mean J x P( dx) (or the median of P, or any other functional t;;(P)) on the basis ofi.i.d. observations from P. Ifnothing is known about P, then the sample mean is certainly the best estimator one can think of. If P is known to be the member of a certain parametric family, say {Po: {) E e}, one can usually do better by estimating {) first, say by {)(n)(.~.), and using J XPo(n)(;r.) (dx) as an estimate for J xPo(dx). There is an "intermediate" range, where we know something about the unknown probability measure P, but less than parametric theory takes for granted. Practical problems have always led statisticians to invent estimators for such intermediate models, but it usually remained open whether these estimators are nearly optimal or not. There was one exception: The case of "adaptivity", where a "nonparametric" estimate exists which is asymptotically optimal for any parametric submodel. The standard (and for a long time only) example of such a fortunate situation was the estimation of the center of symmetry for a distribution of unknown shape.

Informacija

Autorius: Johann Pfanzagl
Serija: Lecture Notes in Statistics
Leidėjas: Springer US
Išleidimo metai: 1990
Knygos puslapių skaičius: 120
ISBN-10: 0387972382
ISBN-13: 9780387972381
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Applied mathematics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Estimation in Semiparametric Models: Some Recent Developments“

Būtina įvertinti prekę

Goodreads reviews for „Estimation in Semiparametric Models: Some Recent Developments“