0 Mėgstami
0Krepšelis
164,85 
164,85 
2025-07-31 164.8500 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic Geometry, Euler systems should be a powerful tool in the future development of the field. Here, in the first book to appear on the subject, Karl Rubin presents a self-contained development of the theory of Euler systems. Rubin first reviews and develops the necessary facts from Galois cohomology. He then introduces Euler systems, states the main theorems, and develops examples and applications. The remainder of the book is devoted to the proofs of the main theorems as well as some further speculations. The book assumes a solid background in algebraic Number Theory, and is suitable as an advanced graduate text. As a research monograph it will also prove useful to number theorists and researchers in Arithmetic Algebraic Geometry.

Informacija

Autorius: Karl Rubin
Leidėjas: Princeton University Press
Išleidimo metai: 2000
Knygos puslapių skaičius: 240
ISBN-10: 0691050767
ISBN-13: 9780691050768
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Number theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Euler Systems“

Būtina įvertinti prekę

Goodreads reviews for „Euler Systems“