0 Mėgstami
0Krepšelis

Evolutionary Data Clustering: Algorithms and Applications

304,90 
304,90 
2025-07-31 304.9000 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering indiverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Informacija

Serija: Algorithms for Intelligent Systems
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2022
Knygos puslapių skaičius: 260
ISBN-10: 9813341939
ISBN-13: 9789813341937
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Evolutionary Data Clustering: Algorithms and Applications“

Būtina įvertinti prekę

Goodreads reviews for „Evolutionary Data Clustering: Algorithms and Applications“