0 Mėgstami
0Krepšelis

Extension and Interpolation of Linear Operators and Matrix Functions

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The classicallossless inverse scattering (LIS) problem of network theory is to find all possible representations of a given Schur function s(z) (i. e. , a function which is analytic and contractive in the open unit disc D) in terms of an appropriately restricted class of linear fractional transformations. These linear fractional transformations corre­ spond to lossless, causal, time-invariant two port networks and from this point of view, s(z) may be interpreted as the input transfer function of such a network with a suitable load. More precisely, the sought for representation is of the form s(Z) = -{ -A(Z)SL(Z) + B(z)}{ -C(Z)SL(Z) + D(z)} -1 , (1. 1) where "the load" SL(Z) is again a Schur function and _ [A(Z) B(Z)] 0( ) (1. 2) Z - C(z) D(z) is a 2 x 2 J inner function with respect to the signature matrix This means that 0 is meromorphic in D and 0(z)* J0(z) ::5 J (1. 3) for every point zED at which 0 is analytic with equality at almost every point on the boundary Izi = 1. A more general formulation starts with an admissible matrix valued function X(z) = [a(z) b(z)] which is one with entries a(z) and b(z) which are analytic and bounded in D and in addition are subject to the constraint that, for every n, the n x n matrix with ij entry equal to X(Zi)J X(Zj )* i,j=l, . . .

Informacija

Autorius: I. Gohberg
Serija: Operator Theory: Advances and Applications
Leidėjas: Birkhäuser Basel
Išleidimo metai: 1990
Knygos puslapių skaičius: 316
ISBN-10: 3764325305
ISBN-13: 9783764325305
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Interdisciplinary studies

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Extension and Interpolation of Linear Operators and Matrix Functions“

Būtina įvertinti prekę

Goodreads reviews for „Extension and Interpolation of Linear Operators and Matrix Functions“