0 Mėgstami
0Krepšelis
197,98 
197,98 
2025-07-31 197.9800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book introduces the reader to a new method of data assimilation with deterministic constraints (exact satisfaction of dynamic constraints)¿an optimal assimilation strategy called Forecast Sensitivity Method (FSM), as an alternative to the well-known four-dimensional variational (4D-Var) data assimilation method. 4D-Var works with a forward in time prediction model and a backward in time tangent linear model (TLM). The equivalence of data assimilation via 4D-Var and FSM is proven and problems using low-order dynamics clarify the process of data assimilation by the two methods. The problem of return flow over the Gulf of Mexico that includes upper-air observations and realistic dynamical constraints gives the reader a good idea of how the FSM can be implemented in a real-world situation.

Informacija

Autorius: Sivaramakrishnan Lakshmivarahan, Rafal Jabrzemski, John M. Lewis,
Serija: Springer Atmospheric Sciences
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2016
Knygos puslapių skaičius: 288
ISBN-10: 3319399950
ISBN-13: 9783319399959
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Forecast Error Correction using Dynamic Data Assimilation“

Būtina įvertinti prekę

Goodreads reviews for „Forecast Error Correction using Dynamic Data Assimilation“