0 Mėgstami
0Krepšelis

Forecasting Economic Time Series using Locally Stationary Processes: A New Approach with Applications

71,72 
71,72 
2025-07-31 71.7200 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Stationarity has always played an important part in forecasting theory. However, some economic time series show time-varying autocovariances. The question arises whether forecasts can be improved using models that capture such a time-varying second-order structure. One possibility is given by autoregressive models with time-varying parameters. The author focuses on the development of a forecasting procedure for these processes and compares this approach to classical forecasting methods by means of Monte Carlo simulations. An evaluation of the proposed procedure is given by its application to futures prices and the Dow Jones index. The approach turns out to be superior to the classical methods if the sample sizes are large and the forecasting horizons do not range too far into the future.

Informacija

Autorius: Tina Loll
Serija: Volkswirtschaftliche Analysen
Leidėjas: Peter Lang
Išleidimo metai: 2012
Knygos puslapių skaičius: 140
ISBN-10: 3631621876
ISBN-13: 9783631621875
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Data science and analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Forecasting Economic Time Series using Locally Stationary Processes: A New Approach with Applications“

Būtina įvertinti prekę

Goodreads reviews for „Forecasting Economic Time Series using Locally Stationary Processes: A New Approach with Applications“