0 Mėgstami
0Krepšelis

Foundations of Mathematical Optimization: Convex Analysis without Linearity

254,08 
254,08 
2025-07-31 254.0800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Many books on optimization consider only finite dimensional spaces. This volume is unique in its emphasis: the first three chapters develop optimization in spaces without linear structure, and the analog of convex analysis is constructed for this case. Many new results have been proved specially for this publication. In the following chapters optimization in infinite topological and normed vector spaces is considered. The novelty consists in using the drop property for weak well-posedness of linear problems in Banach spaces and in a unified approach (by means of the Dolecki approximation) to necessary conditions of optimality. The method of reduction of constraints for sufficient conditions of optimality is presented. The book contains an introduction to non-differentiable and vector optimization. Audience: This volume will be of interest to mathematicians, engineers, and economists working in mathematical optimization.

Informacija

Autorius: S. Rolewicz, Diethard Ernst Pallaschke,
Serija: Mathematics and Its Applications
Leidėjas: Springer Netherlands
Išleidimo metai: 2010
Knygos puslapių skaičius: 600
ISBN-10: 9048148006
ISBN-13: 9789048148004
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Optimization

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Foundations of Mathematical Optimization: Convex Analysis without Linearity“

Būtina įvertinti prekę

Goodreads reviews for „Foundations of Mathematical Optimization: Convex Analysis without Linearity“