0 Mėgstami
0Krepšelis
237,14 
237,14 
2025-07-31 237.1400 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Function spaces, especially those spaces that have become known as Sobolev spaces, and their natural extensions, are now a central concept in analysis. In particular, they play a decisive role in the modem theory of partial differential equations (PDE). Potential theory, which grew out of the theory of the electrostatic or gravita­ tional potential, the Laplace equation, the Dirichlet problem, etc. , had a fundamen­ tal role in the development of functional analysis and the theory of Hilbert space. Later, potential theory was strongly influenced by functional analysis. More re­ cently, ideas from potential theory have enriched the theory of those more general function spaces that appear naturally in the study of nonlinear partial differential equations. This book is motivated by the latter development. The connection between potential theory and the theory of Hilbert spaces can be traced back to C. F. Gauss [181], who proved (with modem rigor supplied almost a century later by O. Frostman [158]) the existence of equilibrium potentials by minimizing a quadratic integral, the energy. This theme is pervasive in the work of such mathematicians as D. Hilbert, Ch. -J. de La Vallee Poussin, M. Riesz, O. Frostman, A. Beurling, and the connection was made particularly clear in the work of H. Cartan [97] in the 1940's. In the thesis of J. Deny [119], and in the subsequent work of J. Deny and J. L.

Informacija

Autorius: Lars I. Hedberg, David R. Adams,
Serija: Grundlehren der mathematischen Wissenschaften
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 1995
Knygos puslapių skaičius: 388
ISBN-10: 3540570608
ISBN-13: 9783540570608
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Functional analysis and transforms

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Function Spaces and Potential Theory“

Būtina įvertinti prekę

Goodreads reviews for „Function Spaces and Potential Theory“