0 Mėgstami
0Krepšelis
115,48 
115,48 
2025-07-31 115.4800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.

Informacija

Autorius: Sholom M. Weiss, Tong Zhang, Nitin Indurkhya,
Serija: Texts in Computer Science
Leidėjas: Springer London
Išleidimo metai: 2015
Knygos puslapių skaičius: 256
ISBN-10: 144716749X
ISBN-13: 9781447167495
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Fundamentals of Predictive Text Mining“

Būtina įvertinti prekę

Goodreads reviews for „Fundamentals of Predictive Text Mining“