0 Mėgstami
0Krepšelis

Geometric Harmonic Analysis V: Fredholm Theory and Finer Estimates for Integral Operators, with Applications to Boundary Problems

338,78 
338,78 
2025-07-31 338.7800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. The text is intended for researchers, graduate students, and industry professionals interested in applications of harmonic analysis and geometric measure theory to complex analysis, scattering, and partial differential equations. The ultimate goal in Volume V is to prove well-posedness and Fredholm solvability results concerning boundary value problems for elliptic second-order homogeneous constant (complex) coefficient systems, and domains of a rather general geometric nature. The formulation of the boundary value problems treated here is optimal from a multitude of points of view, having to do with geometry, functional analysis (through the consideration of a large variety of scales of function spaces), topology, and partial differential equations.

Informacija

Autorius: Dorina Mitrea, Marius Mitrea, Irina Mitrea,
Leidėjas: Springer International Publishing
Išleidimo metai: 2024
Knygos puslapių skaičius: 1012
ISBN-10: 3031315634
ISBN-13: 9783031315633
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Integral calculus and equations

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Geometric Harmonic Analysis V: Fredholm Theory and Finer Estimates for Integral Operators, with Applications to Boundary Problems“

Būtina įvertinti prekę

Goodreads reviews for „Geometric Harmonic Analysis V: Fredholm Theory and Finer Estimates for Integral Operators, with Applications to Boundary Problems“