0 Mėgstami
0Krepšelis
169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Since the building of all the Universe is perfect and is cre­ ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari­ ational principles, i.e., it is postulated that equations describing the evolu­ tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin­ ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La­ grange, and Weierstrass.

Informacija

Autorius: N. A. Bobylov, S. Korovin, S. V. Emel'yanov,
Serija: Mathematics and Its Applications
Leidėjas: Springer Netherlands
Išleidimo metai: 2012
Knygos puslapių skaičius: 564
ISBN-10: 9401059551
ISBN-13: 9789401059558
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Differential calculus and equations

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Geometrical Methods in Variational Problems“

Būtina įvertinti prekę

Goodreads reviews for „Geometrical Methods in Variational Problems“