0 Mėgstami
0Krepšelis

Graph-Based Clustering and Data Visualization Algorithms

101,62 
101,62 
2025-07-31 101.6200 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.

Informacija

Autorius: János Abonyi, Ágnes Vathy-Fogarassy,
Serija: SpringerBriefs in Computer Science
Leidėjas: Springer London
Išleidimo metai: 2013
Knygos puslapių skaičius: 124
ISBN-10: 1447151577
ISBN-13: 9781447151579
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Graph-Based Clustering and Data Visualization Algorithms“

Būtina įvertinti prekę

Goodreads reviews for „Graph-Based Clustering and Data Visualization Algorithms“