0 Mėgstami
0Krepšelis

Guide to High Performance Distributed Computing: Case Studies with Hadoop, Scalding and Spark

82,48 
82,48 
2025-07-31 82.4800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This timely text/reference describes the development and implementation of large-scale distributed processing systems using open source tools and technologies. Comprehensive in scope, the book presents state-of-the-art material on building high performance distributed computing systems, providing practical guidance and best practices as well as describing theoretical software frameworks. Features: describes the fundamentals of building scalable software systems for large-scale data processing in the new paradigm of high performance distributed computing; presents an overview of the Hadoop ecosystem, followed by step-by-step instruction on its installation, programming and execution; Reviews the basics of Spark, including resilient distributed datasets, and examines Hadoop streaming and working with Scalding; Provides detailed case studies on approaches to clustering, data classification and regression analysis; Explains the process of creating a working recommender system using Scalding and Spark.

Informacija

Autorius: Anil Kumar Muppalla, K. G. Srinivasa,
Serija: Computer Communications and Networks
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2016
Knygos puslapių skaičius: 324
ISBN-10: 3319383477
ISBN-13: 9783319383477
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Guide to High Performance Distributed Computing: Case Studies with Hadoop, Scalding and Spark“

Būtina įvertinti prekę

Goodreads reviews for „Guide to High Performance Distributed Computing: Case Studies with Hadoop, Scalding and Spark“