0 Mėgstami
0Krepšelis

Hidden Link Prediction in Stochastic Social Networks

428,36 
428,36 
2025-07-31 428.3600 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types. Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers.

Informacija

Leidėjas: Information Science Reference
Išleidimo metai: 2019
Knygos puslapių skaičius: 308
ISBN-10: 152259096X
ISBN-13: 9781522590965
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Social media / social networking

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hidden Link Prediction in Stochastic Social Networks“

Būtina įvertinti prekę

Goodreads reviews for „Hidden Link Prediction in Stochastic Social Networks“