0 Mėgstami
0Krepšelis

High Dimensional Clustering and Applications of Learning Methods: Non-Redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy

84,92 
84,92 
2025-07-31 84.9200 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book is divided into two parts. The first part is about non-redundant clustering and feature selection for high dimensional data. The second part is on applying learning techniques to lung tumor image-guided radiotherapy. In the first part, a new clustering paradigm is investigated for exploratory data analysis: find all non-redundant clustering views of the data. Also a feature selection method is developed based on the popular transformation approach: principal component analysis (PCA). In the second part, machine learning algorithms are designed to aid lung tumor image-guided radiotherapy (IGRT). Specifically, intensive studies are preformed for gating and for directly tracking the tumor. For gating, two methods are developed: (1) an ensemble of templates where the representative templates are selected by Gaussian mixture clustering, and (2) a support vector machine (SVM) classifier with radial basis kernels. For the tracking problem, a multiple- template matching method is explored to capture the varying tumor appearance throughout the different phases of the breathing cycle.

Informacija

Autorius: Ying Cui
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2009
Knygos puslapių skaičius: 160
ISBN-10: 3838300807
ISBN-13: 9783838300801
Formatas: Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „High Dimensional Clustering and Applications of Learning Methods: Non-Redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy“

Būtina įvertinti prekę

Goodreads reviews for „High Dimensional Clustering and Applications of Learning Methods: Non-Redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy“