This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory.
Autorius: | Andrzej Janczak |
Serija: | Lecture Notes in Control and Information Sciences |
Leidėjas: | Springer Berlin Heidelberg |
Išleidimo metai: | 2004 |
Knygos puslapių skaičius: | 220 |
ISBN-10: | 3540231854 |
ISBN-13: | 9783540231851 |
Formatas: | Knyga minkštu viršeliu |
Kalba: | Anglų |
Žanras: | Cybernetics and systems theory |
Parašykite atsiliepimą apie „Identification of Nonlinear Systems Using Neural Networks and Polynomial Models: A Block-Oriented Approach“