0 Mėgstami
0Krepšelis

Introduction to Combinatorial Torsions

93,15 
93,15 
2025-07-31 93.1500 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei­ demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.

Informacija

Autorius: Vladimir Turaev
Serija: Lectures in Mathematics. ETH Zürich
Leidėjas: Birkhäuser Basel
Išleidimo metai: 2001
Knygos puslapių skaičius: 132
ISBN-10: 3764364033
ISBN-13: 9783764364038
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Geometry

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Introduction to Combinatorial Torsions“

Būtina įvertinti prekę

Goodreads reviews for „Introduction to Combinatorial Torsions“