0 Mėgstami
0Krepšelis

Kac-Moody Groups, their Flag Varieties and Representation Theory

203,26 
203,26 
2025-07-31 203.2600 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Kac-Moody Lie algebras 9 were introduced in the mid-1960s independently by V. Kac and R. Moody, generalizing the finite-dimensional semisimple Lie alge­ bras which we refer to as the finite case. The theory has undergone tremendous developments in various directions and connections with diverse areas abound, including mathematical physics, so much so that this theory has become a stan­ dard tool in mathematics. A detailed treatment of the Lie algebra aspect of the theory can be found in V. Kac's book [Kac-90l This self-contained work treats the algebro-geometric and the topological aspects of Kac-Moody theory from scratch. The emphasis is on the study of the Kac-Moody groups 9 and their flag varieties XY, including their detailed construction, and their applications to the representation theory of g. In the finite case, 9 is nothing but a semisimple Y simply-connected algebraic group and X is the flag variety 9 /Py for a parabolic subgroup p y C g.

Informacija

Autorius: Shrawan Kumar
Serija: Progress in Mathematics
Leidėjas: Birkhäuser Boston
Išleidimo metai: 2002
Knygos puslapių skaičius: 632
ISBN-10: 0817642277
ISBN-13: 9780817642273
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Algebraic geometry

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Kac-Moody Groups, their Flag Varieties and Representation Theory“

Būtina įvertinti prekę

Goodreads reviews for „Kac-Moody Groups, their Flag Varieties and Representation Theory“