0 Mėgstami
0Krepšelis

Kernel Approach for Classification Using Conditional Random Field: Information Extraction

63,18 
63,18 
2025-07-31 63.1800 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Extracting useful information from the pool of big data gives birth to new domain known as Information Extraction. The domain of Information Extraction has its genesis in Natural Language Processing (NLP). The fundamental drift in this field takes the birth from various competitions that are focused on the recognition and extraction of named entities such as names of people, organizations etc. As the world become more data oriented by advent of internet, new applications of processing of structured and unstructured data comes in light. Most of the interest is to extract and classify named entities like person, organization and location etc. that is a subtask of Information Extraction known as Entity Extraction and Classification.

Informacija

Autorius: Lokesh Pawar, Rohit Bajaj,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2022
Knygos puslapių skaičius: 68
ISBN-10: 6204954598
ISBN-13: 9786204954592
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Databases / Data management

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Kernel Approach for Classification Using Conditional Random Field: Information Extraction“

Būtina įvertinti prekę

Goodreads reviews for „Kernel Approach for Classification Using Conditional Random Field: Information Extraction“