0 Mėgstami
0Krepšelis

Kernel Methods and Machine Learning

208,03 
208,03 
2025-07-31 208.0300 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.

Informacija

Autorius: S. Y. Kung
Leidėjas: Cambridge University Press
Išleidimo metai: 2014
Knygos puslapių skaičius: 616
ISBN-10: 110702496X
ISBN-13: 9781107024960
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Pattern recognition

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Kernel Methods and Machine Learning“

Būtina įvertinti prekę

Goodreads reviews for „Kernel Methods and Machine Learning“