0 Mėgstami
0Krepšelis

Kondo Screening vs Indirect Magnetic Exchange in a Kondo Quantum Box: A Study Using Exact Diagonalisation and the VMPS Method

66,13 
66,13 
2025-07-31 66.1300 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The goal of this book is the investigation of physical effects at low energies caused by magnetic impurity adatoms, coupled to a small non-magnetic metallic substrate surface. Such systems can be understood with help of multi-impurity Kondo models, describing the substrate as a tight-binding model of finite-size and the impurities as quantum spins, which are antiferromagnetically coupled locally to their respective substrate sites. Focusing on one-dimensional finite-size systems with open boundary conditions at half-filling numerical exact diagonalisation and the variation of matrix product states (VMPS) method are used for the investigation. It is the aim to study finite-size effects in different regimes of the magnetic exchange interaction. For example due to the finite size of the system, the interplay of the Kondo effect and the indirect magnetic Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction between impurity spins is site dependent and non-trivial for at least three impurity Kondo systems. Furthermore evidence for an unconventional and novel magnetic coupling mechanism, causing magnetic order in the actually non-magnetic substrate, due to inverse indirect magnetic exchange, will be given.

Informacija

Autorius: Daniel Gütersloh
Leidėjas: AV Akademikerverlag
Išleidimo metai: 2013
Knygos puslapių skaičius: 212
ISBN-10: 3639471105
ISBN-13: 9783639471106
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Relativity physics

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Kondo Screening vs Indirect Magnetic Exchange in a Kondo Quantum Box: A Study Using Exact Diagonalisation and the VMPS Method“

Būtina įvertinti prekę

Goodreads reviews for „Kondo Screening vs Indirect Magnetic Exchange in a Kondo Quantum Box: A Study Using Exact Diagonalisation and the VMPS Method“