0 Mėgstami
0Krepšelis

Large-scale Graph Analysis: System, Algorithm and Optimization

254,08 
254,08 
2025-07-31 254.0800 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms ¿ the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms. This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms.

Informacija

Autorius: Yingxia Shao, Lei Chen, Bin Cui,
Serija: Big Data Management
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2020
Knygos puslapių skaičius: 160
ISBN-10: 9811539278
ISBN-13: 9789811539275
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Large-scale Graph Analysis: System, Algorithm and Optimization“

Būtina įvertinti prekę

Goodreads reviews for „Large-scale Graph Analysis: System, Algorithm and Optimization“