0 Mėgstami
0Krepšelis

Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach

76,21 
76,21 
2025-07-31 76.2100 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.

Informacija

Autorius: Xin Luo, Ye Yuan,
Serija: SpringerBriefs in Computer Science
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2022
Knygos puslapių skaičius: 100
ISBN-10: 9811967024
ISBN-13: 9789811967023
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Expert systems / knowledge-based systems

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach“

Būtina įvertinti prekę

Goodreads reviews for „Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach“